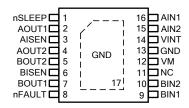


## Dual H-Bridge Motor Driver

## **Description**

The FP5530 provides a dual bridge motor driver for a bipolar stepper motor, solenoids, or other inductive loads.


The output driver block of each H-bridge consists of a P-channel and N-channel power MOSFETs configured as an H-bridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

The FP5530 fault protection includes over current limit, short circuit protection, UVLO and thermal shutdown. In sleep mode, the supply current is about  $1.6\mu A$ .

The FP5530 is offered in 16 pin TSSOP and TQFN packages with exposed pad, which provides good thermal conductance.

## **Pin Assignments**

A3 Package (TSSOP-16)



W3 Package (TQFN-16)(3mm x 3mm)

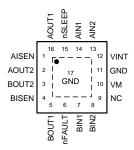



Figure 1. Pin Assignments of FP5530

### **Features**

- Dual H-Bridge Current Control Driver One Stepper Motor
- Low R<sub>DS(ON)</sub> Integrated Power MOSFET HS+LS: 1735mΩ
- Output Current Capability (At VM = 5V, 25°C)
   TSSOP Package
   -0.7A RMS, 1A Peak per H-bridge
   TQFN Package
- -0.6A RMS, 1A Peak per H-bridgeWide Input Voltage Range: 2.7V to 15V
- Low current in sleep mode: 1.6uA
- Input Under Voltage Lockout
- PWM Winding Current control and limited
- Over-Temperature Protection with Auto Recovery
- High power 16-pin TSSOP and TQFN (3mm x 3mm) packages

## **Applications**

- POS Printers/Office Automation Machines
- Video Security Cameras
- Gaming Machines/Robotics/Battery-Powered Toys

## **Ordering Information**





# **Typical Application Circuit**

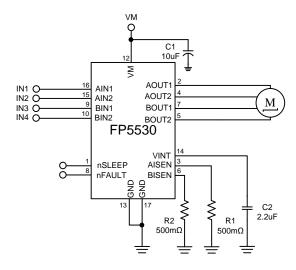



Figure 2. Step Motor Application Circuit for TSSOP Package



# **Functional Pin Description**

| Pin<br>Name | TQFN<br>Pin No. | TSSOP<br>Pin No. | Pin Function                                                                                                                       |
|-------------|-----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| AISEN       | 1               | 3                | Isense. Connect to current sense resistor for bridge A, or GND if current control not needed.                                      |
| AOUT2       | 2               | 4                | Bridge A output 2.                                                                                                                 |
| BOUT2       | 3               | 5                | Bridge B output 2.                                                                                                                 |
| BISEN       | 4               | 6                | Isense. Connect to current sense resistor for bridge B or GND if current control not needed.                                       |
| BOUT1       | 5               | 7                | Bridge B output 1.                                                                                                                 |
| nFAULT      | 6               | 8                | Fault indication pin. Logic low when it into fault condition.                                                                      |
| BIN1        | 7               | 9                | Bridge B input 1. Logic input controls state of AOUT1. Internal pull-down.                                                         |
| BIN2        | 8               | 10               | Bridge B input 2. Logic input controls state of AOUT1. Internal pull-down.                                                         |
| NC          | 9               | 11               | NC                                                                                                                                 |
| VM          | 10              | 12               | Device power voltage. Connect motor supply. A 10uF ceramic bypass capacitor to GND is recommended.                                 |
| GND         | 11,17           | 13, 17           | Ground pin.                                                                                                                        |
| VINT        | 12              | 14               | Internal supply bypass to GND with 2.2uF ceramic capacitor.                                                                        |
| AIN2        | 13              | 15               | Bridge A input 2. Logic input controls state of AOUT1. Internal pull-down.                                                         |
| AIN1        | 14              | 16               | Bridge A input 1. Logic input controls state of AOUT1. Internal pull-down.                                                         |
| nSLEEP      | 15              | 1                | Sleep mode. Logic high to enable device, logic low to enter low power sleep mode and reset all internal logic. Internal pull-down. |
| AOUT1       | 16              | 2                | Bridge A output 1.                                                                                                                 |



# **Block Diagram**

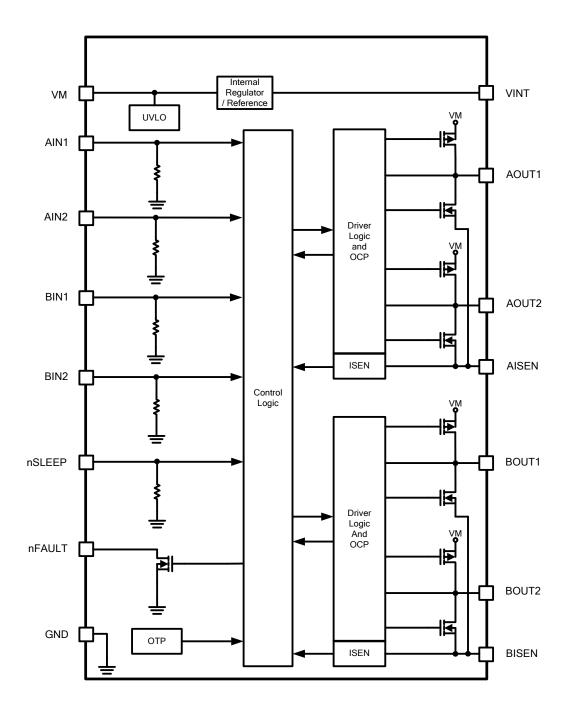



Figure 3. Block Diagram of FP5530



# Absolute Maximum Ratings (Note 1)

| Supply Voltage VM                                                                            | 0.3V to +18V@0.3A    |
|----------------------------------------------------------------------------------------------|----------------------|
| Internal regulator VINT                                                                      | 0.3V to +6V          |
| Digital input pin voltage                                                                    | 0.3V to +7V          |
| Continuous phase node pins                                                                   | 0.3V to VM+0.5V      |
| Pulsed 10us phase node pins                                                                  | 1 to VM+1V           |
| Continuous shunt amplifier input pins                                                        | 0.3V to +0.5V        |
| Pulsed 10us phase input pins                                                                 | 1 to +1V             |
| Peak motor driver output current                                                             | - Internally limited |
| Maximum Junction Temperature (T <sub>J</sub> )                                               | 40°C to +150°C       |
| <ul> <li>Package Thermal Resistance, (θ<sub>JA</sub>)</li> </ul>                             |                      |
| TSSOP-16                                                                                     | - 54°C/W             |
| TQFN                                                                                         | - 68°C/W             |
| <ul> <li>Package Thermal Resistance, (θ<sub>JC</sub>)</li> </ul>                             |                      |
| TSSOP-16                                                                                     | - 20°C/W             |
| TQFN                                                                                         | - 46°C/W             |
| Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent dam | age to the device.   |

Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the device

# **Recommended Operating Conditions**

| Motor power supply voltage range  | - +2.7V to +15V |
|-----------------------------------|-----------------|
| Digital input pin voltage range   | - 0 to +5.5V    |
| Motor RMS current (TSSOP package) | - 0 to 0.7A     |
| Motor RMS current (TQFN package)  | - 0 to 0.6A     |
| Applied PWM signal to xINx        | 0 to 200kHz     |
| Operation Temperature Range       | 40°C to +85°C   |



## **Electrical Characteristics**

| Parameter                         | Parameter Symbol Conditions |                                | Min | Тур | Max | Unit |  |  |  |
|-----------------------------------|-----------------------------|--------------------------------|-----|-----|-----|------|--|--|--|
| Power Supply                      |                             |                                |     |     |     |      |  |  |  |
| VM operating voltage              | VM                          |                                | 2.7 |     | 15  | V    |  |  |  |
| VM operating supply current       | I <sub>VM</sub>             | VM=5V,xINx=low, nSLEEP=H       |     | 1.7 | 3   | mA   |  |  |  |
| VM sleep mode supply current      | IVMQ                        | VM=5V, nSLEEP=L                |     | 1.6 | 2.7 | uA   |  |  |  |
| Sleep time                        | t <sub>SLEEP</sub>          | nSLEEP=L to sleep mode         |     | 10  |     | us   |  |  |  |
| Wake up time                      | twake                       | nSLEEP=H to output transition  |     | 155 |     | us   |  |  |  |
| Internal regulator voltage        | VINT                        |                                |     | 5   |     | ٧    |  |  |  |
| Logic-Level Inputs                |                             |                                |     |     |     |      |  |  |  |
| law et leverelte se               | VIL                         | nSLEEP                         |     |     | 0.5 | V    |  |  |  |
| Input low voltage                 | VIL                         | xINx                           |     |     | 0.7 |      |  |  |  |
| Input high voltage                | V <sub>IH</sub>             | nSLEEP                         | 2.5 |     | 5.5 | V    |  |  |  |
| input night voltage               |                             | xINx                           | 2   |     | 5.5 | V    |  |  |  |
| Input hysteresis                  | V <sub>H</sub> YS           |                                |     | 0.4 |     | V    |  |  |  |
| Input pulldown resistance         | R <sub>PD</sub>             | nSLEEP                         | 380 | 500 | 750 | kΩ   |  |  |  |
| input pulluowii resistance        | KPD                         | xINx                           | 100 | 150 | 250 |      |  |  |  |
| Input low current                 | lı∟                         | VIN=0V                         | -1  |     | 1   | uA   |  |  |  |
| Input high current                | l <sub>іН</sub>             | VIN=5V                         |     |     | 50  | uA   |  |  |  |
| Input deglitch current            | tDEG                        |                                |     | 575 |     | ns   |  |  |  |
| Propagation delay INx to OUTx     | tprop                       | VM=5V                          |     | 1.2 |     | us   |  |  |  |
| nFAULT Output (Open-Drain Outpu   | ut)                         |                                |     |     |     |      |  |  |  |
| Output low voltage                | V <sub>OL</sub>             | Io=5mA                         |     |     | 0.5 | V    |  |  |  |
| Output high leakage current       | Іон                         | R <sub>PULLUP</sub> =1kΩ to 5V | -1  |     | 1   | uA   |  |  |  |
| Current Control                   |                             | •                              |     |     |     |      |  |  |  |
| xISEN trip voltage                | V <sub>TRIP</sub>           |                                | 160 | 200 | 240 | mV   |  |  |  |
| Current control constant off time | t <sub>off</sub>            | Internal PWM constant off time |     | 20  |     | us   |  |  |  |



# **Electrical Characteristics (Continued)**

| Parameter                             | Symbol                | Conditions                                        | Min | Тур  | Max | Unit  |  |  |  |
|---------------------------------------|-----------------------|---------------------------------------------------|-----|------|-----|-------|--|--|--|
| Motor Driver Outputs (xOUTx)          |                       |                                                   |     |      |     |       |  |  |  |
| LIO FET                               | 110 5 1 ( )           | VM=5V, Io=200mA, Tj=25°C                          |     | 1180 |     |       |  |  |  |
| HS FET on resistance                  | HS,Rds(on)            | VM=2.7V ,lo=200mA,<br>Tj=85°C <sup>(Note 2)</sup> |     | 1550 |     | mΩ    |  |  |  |
| LOFFT                                 | 1001()                | VM=5V, Io=200mA, Tj=25°C                          |     | 555  |     | 11122 |  |  |  |
| LS FET on resistance                  | LS,Rds(on)            | VM=2.7V, Io=200mA,<br>Tj=85°C <sup>(Note 2)</sup> |     | 635  |     |       |  |  |  |
| Off-state leakage current             | loff                  | VM=5V, Tj=25°C, Vout=0V                           | -1  |      | 1   | uA    |  |  |  |
| Rise time                             | t <sub>R</sub>        | VM=5V, 16Ω to GND                                 |     | 70   |     | ns    |  |  |  |
| Fall time                             | t <sub>F</sub>        | VM=5V, 16Ω to VM                                  |     | 80   |     | ns    |  |  |  |
| Dead time                             | <b>t</b> DEAD         | internal dead time                                |     | 450  |     | ns    |  |  |  |
| Protection Circuits                   |                       |                                                   |     |      |     |       |  |  |  |
| VM and an alternation to              | .,                    | VM falling; UVLO report                           |     |      | 2.6 | V     |  |  |  |
| VM under voltage lockout              | Vuvlo                 | VM rising; UVLO recovery                          |     |      | 2.7 | V     |  |  |  |
| VM under voltage lockout hysteresis   | V <sub>UVLO,HYS</sub> | Rising to falling threshold                       |     | 90   |     | mV    |  |  |  |
| Over current protection trip level    | Іоср                  |                                                   | 1   |      |     | Α     |  |  |  |
| OCP deglitch time                     | tDEG                  |                                                   |     | 2.3  |     | us    |  |  |  |
| Over Current protection period        | toce                  |                                                   |     | 1.4  |     | ms    |  |  |  |
| Thermal shutdown temperature (Note 2) | trsp                  | Die temperature                                   | 150 |      |     | °C    |  |  |  |

Note 2: Not production tested.



## **Function Description**

The FP5530 is an integrated motor driver for bipolar stepper motors. The device integrated two PMOS+NMOS H-bridge and current regulation circuitry. The FP5530 can be powered with a supply voltage from 2.7V to 15V and can provide an output current up to 700mA RMS, and including the PWM interface allows easy interfacing to the controller circuit, a fixed off time slow decay, a low power sleep mode, which lets the system save power when not driving the power.

### **Bridge Control and Decay Modes**

The AIN1 and AIN2 input pins control the state of the AOUT1 and AOUT2 outputs, the BIN1 and BIN2 input pins control the state of the BOUT1 and BOUT2 outputs. Table 1 shows the logic.

| xIN1 | xIN2 | xOUT1 | xOUT2 | FUNCTION         |
|------|------|-------|-------|------------------|
| 0    | 0    | Z     | Z     | Coast/Fast decay |
| 0    | 1    | L     | Н     | Reverse          |
| 1    | 0    | Н     | L     | Forward          |
| 1    | 1    | L     | L     | Brake/Slow decay |

Table 1. H-Bridge Logic

The inputs can also be used for PWM control of the motor speed. When controlling a winding with PWM, when the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow. This is called recirculation current. To handle this recirculation current, the H-bridge can operate in two different states: fast decay or slow decay. In fast decay mode, the H-bridge is disabled and recirculation current flows through the body diodes, in slow decay, the motor winding is shorted.

To PWM using fast decay, the PWM signal is applied to one xIN pin while the other is held low, to use slow decay, one xIN pin is held high.

| xIN1 | xIN2 | FUNCTION               |  |  |
|------|------|------------------------|--|--|
| PWM  | 0    | Forward PWM/Fast decay |  |  |
| 1    | PWM  | Forward PWM/Slow decay |  |  |
| 0    | PWM  | Reverse PWM/Fast decay |  |  |
| PWM  | 1    | Reverse PWM/Slow decay |  |  |

Table 2. PWM control of Motor Speed

#### **Current Control**

The current through the motor windings may be limited, or controlled, by a 20us constant off time PWM current regulation, or current chopping. For stepper motors, current control is often used at all times. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle. Immediately after the current is enabled, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at 3.75us. This blanking time also sets the minimum on time of the PWM when operating in current chopping mode. The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor connected to the xISEN pins with reference voltage. The reference voltage is fixed at 200mV nominally.

The chopping current is the maximum current driven through either winding. The quantity depends on the sense resistor value(R<sub>XISEN</sub>) The chopping current is calculated in Equation.

$$I_{CHOP} = \frac{200mV}{R_{ISENSE}}$$

### **Decay Mode**

After the chopping current threshold is reached, the H-bridge switches to slow decay mode. This state is held for current chopping blanking time (20us) until the next cycle to turn on the high side MOSFETs.

#### **Slow Decay**

In slow decay, the high side MOSFETs are turned off and both of the low side MOSFETs are turned on. The motor current decrease while flowing in the two low side MOSFETs until reaching its fixed off time (typically 20us). After off time, the high side MOSFETs are enable to increase the winding current again.

8



## **Function Description (Continued)**

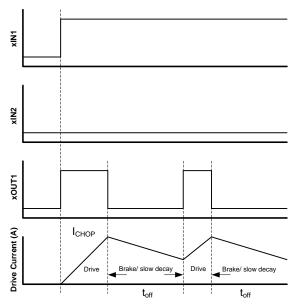



Figure 4. Current Chopping Operation

#### Sleep Mode operation

Driving nSLEEP low will put the device into a low power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped, all internal logic is reset, and all internal clocks are stopped. All inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time, twake, needs to pass before the motor driver becomes fully operational. To make the board design simple, the nSLEEP can be pulled up to the supply (VM). Recommends using a pull up resistor when this is done. This resistor limits the current to the input case VM is higher than 6.5V. Internally, the nSLEEP pin has 500kΩ resistor to GND. It also has a clamping Zener diode that clamps the voltage at the pin at 6.5V. Current greater than 250uA can cause damage to the input structure. Hence the recommended pull up resistor would be between  $20k\Omega$  and  $75k\Omega$ .

#### **Input Under Voltage Lockout**

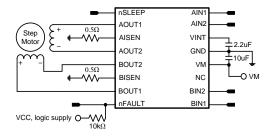
When the FP5530 is power on, the internal circuits are held inactive until VM voltage exceeds the input UVLO threshold voltage. And the regulator will be disabled when VM is below the input UVLO threshold voltage.

#### **Over Current Protection**

An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time, all FETs in the H-bridge will be disable and the nFAULT pin will be driven low. The driver will be re-enabled after the OCP retry period (tocp) has passed. nFAULT becomes high again at this time. If the fault condition is still present, normal operation resumes and nFAULT remains deasserted. Please note that only the H-bridge in which the OCP is detected will be disabled while the other bridge will function normally. nFAULT work after 1.4ms of VM power on.

Over current conditions are detected independently on both high and low side devices. When the device occur a short to ground, supply, or across the motor winding will all result in an over current shutdown. Over current protection does not use the current sense circuitry used for PWM current control, so it functions even without presence of the xISEN resistors.

#### **Over Temperature Protection**


The FP5530 incorporates an over temperature protection circuit to protect itself from overheating. When the junction temperature exceeds the thermal shutdown threshold temperature, all FETs in the H-bridge will be disable and nFault pin will be driven low. Once the die temperature has fallen to a safe level, operation will automatically resumed.



## **Application Information**

The FP5530 is used in bipolar stepper motor control. The following description which can be used to FP5530 in a bipolar stepper motor application.

### **Typical Application Circuit**



### **Design Requirements**

Table 3 gives input parameters for system design

| Design Parameter         | Reference             | Example Value     |
|--------------------------|-----------------------|-------------------|
| Supply voltage           | VM                    | 8.4V              |
| Motor winding resistance | $R_L$                 | 10Ω/phase         |
| Motor winding inductance | LL                    | 4mH/phase         |
| Motor full step angle    | $\theta_{	ext{step}}$ | 1.8°/step         |
| Target stepping level    | n <sub>m</sub>        | 2 (half-stepping) |
| Target motor speed       | V                     | 120rpm            |
| Target chopping current  | I <sub>CHOP</sub>     | 400mA             |
| Sense resistor           | R <sub>ISEN</sub>     | 0.5Ω              |

Table 3. Design Parameters

## **Design Procedure**

### **Stepper Motor Speed**

The first step in configuring the FP5530 requires the desired motor speed and stepping level. The FP5530 can support full and half stepping modes using the PWM interface.

If the target motor speed is too high, the motor does not spin. Ensure that the motor can support the target speed.

For a desired motor speed (v), microstepping level ( $n_m$ ), and motor full step angle ( $\theta_{step}$ ),

$$f_{step}(step/s) = \frac{v(rpm) \times n_m(steps) \times 360^{\circ}/rot}{Q_{step}(^{\circ}/step) \times 60s/min}$$

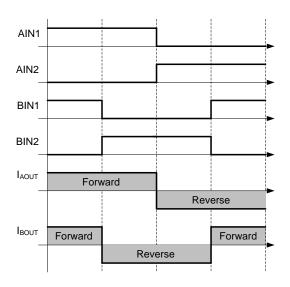



Figure 5. Full Step Mode

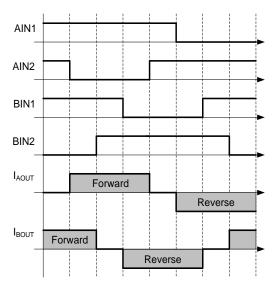


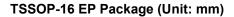

Figure 6. Half Step Mode

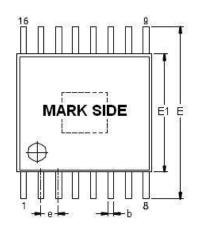
The chopping current ( $I_{CHOP}$ ) is the maximum current driven through either winding. This quantity depends on the sense resistor value ( $R_{XISEN}$ ).

$$I_{CHOP} = \frac{200mV}{R_{XISEN}}$$

 $I_{\text{CHOP}}$  is set by a comparator the voltage across RXISEN to reference voltage. Note that  $I_{\text{CHOP}}$  must follow equation to avoid saturation motor.

$$I_{FS}(A) < \frac{VM(V)}{R_L(\Omega) + R_{DS(ON),HS}(\Omega) + R_{DS(ON),LS}(\Omega)}$$


Where

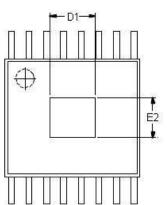

VM is the motor supply voltage.


R<sub>L</sub> is the motor winding resistance.



## **Outline Information**





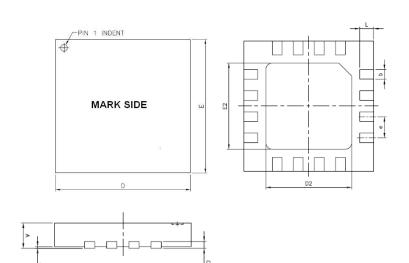

| SYMBOLS | DIMENSION IN MILLIMETER |      |  |
|---------|-------------------------|------|--|
| UNIT    | MIN                     | MAX  |  |
| Α       | 0.80                    | 1.20 |  |
| A1      | 0.00                    | 0.15 |  |
| A2      | 0.80                    | 1.05 |  |
| b       | 0.19                    | 0.30 |  |
| D       | 4.90                    | 5.10 |  |
| E1      | 4.30                    | 4.50 |  |
| Е       | 6.20                    | 6.60 |  |
| е       | 0.55                    | 0.75 |  |
| L       | 0.45                    | 0.75 |  |
| D1      | 1.98                    | 3.00 |  |
| E2      | 1.98                    | 3.00 |  |

E2 1.98
Note 3: Followed From JEDEC MO-153-F.





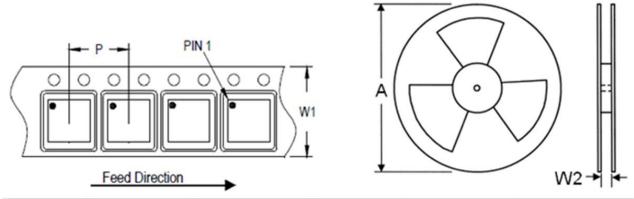
## **Carrier Dimensions**




| Tape Size | Pocket Pitch | Pitch Reel Size (A) Reel Width Empty Cavity | Units per Reel |         |           |       |
|-----------|--------------|---------------------------------------------|----------------|---------|-----------|-------|
| (W1) mm   | (P) mm       | in                                          | mm             | (W2) mm | Length mm |       |
| 12        | 8            | 13                                          | 330            | 12.4    | 240~1120  | 2,500 |



# **Outline Information (Continued)**


## TQFN-16 3mm×3mm ( pitch 0.5mm ) Package (Unit: mm)



| SYMBOLS | DIMENSION IN MILLIMETER |      |  |  |  |  |
|---------|-------------------------|------|--|--|--|--|
| UNIT    | MIN                     | MAX  |  |  |  |  |
| Α       | 0.70                    | 0.80 |  |  |  |  |
| A1      | 0.00                    | 0.05 |  |  |  |  |
| С       | 0.19                    | 0.30 |  |  |  |  |
| E       | 2.90                    | 3.10 |  |  |  |  |
| D       | 2.90                    | 3.10 |  |  |  |  |
| L       | 0.25                    | 0.50 |  |  |  |  |
| b       | 0.18                    | 0.30 |  |  |  |  |
| е       | 0.45                    | 0.55 |  |  |  |  |
| E2      | 1.50                    | 1.80 |  |  |  |  |
| D2      | 1.50                    | 1.80 |  |  |  |  |

Note4: Followed From JEDEC MO-220.

## **Carrier Dimensions**



| Tape Size | Pocket Pitch | Reel Size (A) |     | Reel Width | <b>Empty Cavity</b> | Units per Reel |
|-----------|--------------|---------------|-----|------------|---------------------|----------------|
| (W1) mm   | (P) mm       | in            | mm  | (W2) mm    | Length mm           |                |
| 12        | 8            | 13            | 330 | 12.4       | 400~1000            | 3,000          |

**Life Support Policy**Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.